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Abstract. MSER features are redefined to improve their performances
in matching and retrieval tasks. The proposed SIMSER features (i.e.
scale-insensitive MSERs) are the extremal regions which are maximally
stable not only under the threshold changes (like MSERs) but, addition-
ally, under image rescaling (smoothing). Theoretical advantages of such
a modification are discussed. It is also preliminarily verified experimen-
tally that such a modification preserves the fundamental properties of
MSERs, i.e. the average numbers of features, repeatability, and com-
putational complexity (which is only multiplicatively increased by the
number of scales used), while performances (measured by typical CBVIR
metrics) can be significantly improved. In particular, results on bench-
mark datasets indicate significant increments in recall values, both for
descriptor-based matching and word-based matching. In general, SIM-
SERs seem particularly suitable for a usage with large visual vocabular-
ies, e.g. they can be prospectively applied to improve quality of BoW
pre-retrieval operations in large-scale databases.
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1 Introduction and Background

MSER features (originally proposed in [1] and computationally improved in [2])
continue to attract attention of machine vision researchers and practitioners.
In comparison to other affine-invariant features, their main advantages are: (1)
moderate computational complexity and the algorithmic structure suitable for
hardware implementations , e.g. [3, 4], and (2) a good identification of signifi-
cant image parts usually combined with high repeatability under typical image
distortions (as reported in [5]).

Nevertheless, some disadvantages of MSER features have been identified. In
particular, MSERs have limited performances on blurred and/or textured im-
ages. Both cases are actually related to the image scale, since blur (which can
distort shapes of extracted MSERs) is equivalent to image down-scaling, e.g. [6].
Similarly, shapes of fine texture details can vary irregularly under image rescal-
ing. Protruding fragments of non-convex MSERs are particularly vulnerable to
scale variations (as discussed in [7]).
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Thus, a number of papers have been addressing the issue of actual insensi-
tivity of MSER features to scale variations. A simple approach (based on the
original concept of MSER detection) is proposed in [8]. The authors just detect
MSERs in a pyramid of down-scaled images, and keep all of them (after remov-
ing near-duplicate MSERs which reappear at different scales). More recently,
combinations of the original MSER algorithm with other techniques have been
proposed to improve performances of MSER detection. For example, in [7], al-
ternative stability criteria for moment-normalized extremal regions are applied
to improve affine-invariance for blurred areas. In [9], MSERs are detected over
saliency maps (highlighting boundaries) of images. Again, the primary objective
is to improve robustness to blur.

In this paper, we also strive to correct the above-mentioned inadequacies of
MSER features and, subsequently, to improve reliability of MSER-based image
matching/retrieval. The main objective is to preserve, as much as possible, the
original principles of MSER detection and, therefore, our approach is closer to
the ideas outlined in [8] rather than to more complicated improvements proposed
in other papers.

In general, instead of detecting maximally stable extremal regions in 1D space
of intensity thresholds (the original MSER algorithm) the proposed method iden-
tifies extremal regions which are maximally stable both under the threshold
changes and under the scale variations (i.e. blur). We demonstrate that such a
switch to a 2D space only moderately increases computational complexity, while
performances (evaluated by most typical metrics of images matching) can be
significantly improved. We also illustrate on simple analytical examples that in-
tuitive notions are better satisfied by the proposed model than by the original
MSER model.

Section 2 of the paper presents formal details of the proposed algorithm, and
illustrates selected effects resulting from this theoretical model. A limited scale
experimental verification of the algorithm’s performances is presented in Section
3. Concluding remarks are included in Section 4.

2 Mathematical Models

2.1 Standard MSER Detection

Maximally stable extremal regions have been defined in [1] as black (or white)
areas of a thresholded image which only insignificantly vary under threshold
changes. Formally, a binarized region Q(t) (where t indicates its threshold level)
is considered MSER if the growth rate function q(t) defined by the derivative of
the region area over the threshold values:

q(t) =
d
dt ‖Q(t)‖
‖Q(t)‖ , (1)

reaches a local minimum (‖·‖ indicates the region area).
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In practice, Eq. 1 is substituted by one of its discrete approximations:

q(tj) =
‖Q(tj)−Q(tj−1)‖

‖Q(tj)‖ or q(tj) =
‖Q(tj+1)−Q(tj−1)‖

‖Q(tj)‖ , (2)

where the difference tj − tj−1 defines the threshold increment Δt.
The above formulas apply to both dark and brigth MSERs (for the latter,

images should be inverted).
A number of other parameters is used to control stability of MSER detection

and to reduce the nesting effects (e.g. caused by blurs), see [1, 2].

2.2 SIMSER Features

The proposed improvements of MSER features are motivated by the results from
several papers (see Section 1) which indicate that taking into account multiple
resolutions (image blurring) may improve performances. Since (to the best of
our knowledge) no formal model of MSER detection in multiresolution images
seems to exist, we propose scale-insensitive maximally stable extremal regions
(SIMSERs) model which extends the mechanism of MSER detection into a 2D
space Threshold×Scale. Although the name scale-insensitive sounds redundant
because MSERs are supposed to be scale-invariant by default, we can argue that
such a name modification highlights improvements in the actual invariance of
these features to rescaling (blurring) effects.

Given an image presented over a range of scales s ∈ S (i.e. a family of
images) and binarized using a range of thresholds t ∈ T , an extremal regions
Q(s, t) (where s defines the current scale and t indicates the current binarization
threshold) is considered SIMSER, if two growth rate functions q1(s, t) and q2(s, t)
defined by the partial derivatives of the region area over s and t jointly reach
the local minimum there:

q1(s, t) =
∂
∂t ‖Q(s, t)‖
‖Q(s, t)‖ , (3)

q2(s, t) =
∂
∂s ‖Q(s, t)‖
‖Q(s, t)‖ . (4)

To illustrate the concept of region stability under blurring (scaling), Fig. 1
shows evolution of a selected dark extremal region over a number of scales.

2.3 Theoretical Advantages of SIMSERs

Advantages of SIMSERs can be preliminarily discussed using two test images,
with rectangular and triangular intensity profiles, correspondingly. The images
are shown in Fig. 2 (1D case is selected to simplify calculations).

MSER features are extracted from these images at minima of the growth
rate function q(t) (see Eq. 1), while SIMSERs are extracted at joint minima of
two growth rate functions q1(s, t) and q2(s, t) (see Eqs 3 and 4). For SIMSER
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Fig. 1. A sequence of dark extremal regions over a number of neighboring scales (with
the same threshold). The framed central region is maximally stable under scale changes,
and may be eventually identified as SIMSER (if it is also maximally stable in the
threshold dimension).

Fig. 2. Two 1D images with rectangular and triangular intensity profiles. The range
of intensities is 〈0; 1〉.

extraction, the family of multi-scale images (where scale s ranges from 0 to ∞) is

created using simple image averaging is(x) =
1
2s

∫ x+s

x−s
i(ζ)dζ, i.e. s = 0 represents

the original image and larger scales correspond to more smoothing.
For the rectangular intensity profile (left image in Fig. 2):

q(t) = 0 , q1(t, s) =
4s

1 + 2s(1− 2t)
and q2(t, s) =

|2− 4t|
1 + 2s(1− 2t)

. (5)

Therefore, the number of extracted MSERs is either infinite or zero (depending
on the interpretation of zero values of q(t)), while SIMSER is detected only once
for t = 0.5 and s = 0, i.e. the image should not be smoothed and the threshold
is at half of the maximum intensity. Such a result is intuitively more plausible.

For the triangular intensity profile (right image in Fig. 2), q(t) = 1
1−t reaches

the minimum only once for t = 0. Intuitively, MSER should be rather detected
somewhere at non-zero threshold. The functions q1(s, t) and q2(s, t), however,
have too joint minima (details are not presented because of complex and tedious
mathematical analysis). First, SIMSER is detected for t = 0 and s = 0 (which
is identical to MSER above), while the second SIMSER exists for t = 0.5 and
s = 0.5, i.e. the image should be slightly smoothed and thresholded at half of the
maximum intensity. Again, SIMSER detection results seem to be more complete
and plausible.

2.4 Implementation Details and Computational Complexity

The numerical schemes for computing q1(s, t) and q2(s, t) growth rate functions
in discretized Threshold× Scale space are basically the same (following Eq. 2),
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i.e.

q1(tj , sk) =
‖Q(tj , sk)−Q(tj−1, sk)‖

‖Q(tj , sk)‖ or q1(tj , s) =
‖Q(tj+1, sk)−Q(tj−1, sk)‖

‖Q(tj , sk)‖ ,

(6)

q2(tj , sk) =
‖Q(tj , sk)−Q(tj , sk−1)‖

‖Q(tj , sk)‖ or q2(tj , sk) =
‖Q(tj , sk+1)−Q(tj , sk−1)‖

‖Q(tj , sk)‖ .

(7)
In line with recommendations from the original MSER papers and Matlab, we
use in the subsequent experiments the threshold increment Δt = 3 (for images
with 256 levels of intensity).

The scale-space increments follow the standards of multi-scale image process-
ing (e.g. [10]), i.e. the original image is repetitively convolved with a smoothing
filter equivalent to halving the image resolution. The minimum equivalent image
size is assumed 64 because 32 pixels is a default (in Matlab) minimum size of
MSER features, and we assume (somehow arbitrarily) that the largest MSER
should not cover more than a half of an image. Thus, the number of scales NS
is defined by

NS = 1 + �log2(n/64)� , (8)

where n is the image resolution.
For example, for images of VGA resolution 640×480 the recommended num-

ber of scales is 13.
Based on the structure of Egs 6 and 7, we can preliminarily claim that com-

putational complexity of SIMSER detection is the same as the complexity of
MSER detection (subject to the multiplication by the number of scales NS,
which is considered constant and as such it does not affect the theoretical esti-
mate), i.e. O(n × log(log(n))) or O(n) (the former based on [1], and the latter
given in [2]).

The only issue is to verify whether the growth rate function q2(tj , sk), which
does not exist in the original MSER algorithm, has the same or lower computa-
tional complexity. The problem is that the extremal regions over the sequence
of threshold values are always nested, while the extremal regions over the se-
quence of scales generally do not nest (an illustrative example is given in Fig. 3),
i.e. the topology of extremal regions may unpredictably change under image
smoothing. Nevertheless, a simple algorithm has been proposed to track corre-
spondences between extremal regions in the neighboring scales and to (simulta-
neously) compute the growth rate function q2(tj , sk). A commented pseudo-code
of this algorithm is shown at the end of the paper. It is deliberately not opti-
mized (a more practical variant is outlined in [11]) to clearly illustrate its O(n)
complexity. This pseudo-code corresponds to the left expression in Eq. 7.

3 Preliminary Experimental Evaluation

SIMSER features have been experimentally compared to MSERs using several
aspects of their performances. In general, the objective was to evaluate gains
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Fig. 3. Evolution of a dark extremal region over two neighboring scales (smoothing
removes sharp fragments). The regions intersect significantly, but there is no nesting
in either direction.

achieved by using SIMSERs instead of MSERs. Therefore, the results are given
relatively to the corresponding MSER results (which are considered references
with unit values).

3.1 General Properties

First, we established relations between numbers and distributions of SIMSER
and MSER features in typical images. Experiments have been conducted on a
large number of images (including benchmark datasets used in other experiments
mentioned below), and the conclusions are as follows:

1. The numbers of SIMSER features are generally similar to the numbers of
MSERs, even though SIMSERs are found from a multi-scale pyramid of
images. The average number of SIMSER features is 109% of the average
number of MSERs (with very few cases outside 80% - 130% range).

2. SIMSER features are generally better concentrated in the areas of higher
visual prominence (see an example in Fig. 4) which suggests that SIMSERs
are more likely to maintain their numbers under image distortions. Using a
collection of near-duplicate images (including the benchmark dataset at [12])
distorted by illumination changes, blur, JPEG compression, rotation and
scaling, we found that the standard deviation of SIMSER numbers within
the same image under diversified distortions is, in average, lower by 38%
than the standard deviation of MSER numbers.

3. It seems the numbers of SIMSERs are less sensitive to MaxAreaVariation
parameter which is used (see the Matlab notation at [13]) to define acceptable
minima of growth rate functions.

3.2 Keypoint Detection and Matching

We have used three popular metrics to compare performances of SIMSERs and
MSERs. First, keypoint repeatability is evaluated. Subsequently, reliability of
keypoint matching is estimated using precision and recall parameters. Although
these two parameters evaluate primarily performances of keypoint descriptors,
they can be instrumental in assessing keypoint detectors as well. Precision and
recall can be compared using the same descriptor over keypoints extracted by
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Fig. 4. MSER (left) and SIMSER (right) detection in an exemplary image. To maxi-
mize the number of features, MaxAreaVariation parameter was not restricted.

alternative detectors. We have adopted this approach, with SIFT descriptor
computed over MSER and SIMSER features. SIFT (in RootSIFT variant) has
been selected because of its popularity and good performances. Results based
both on matching SIFT descriptors (vectors) and matching SIFT-based visual
words are discussed; the latter for the practical importance.

Repeatability. Repeatability of MSERs and SIMSERs was compared on a
popular dataset [12] which provides homographies between the-same-category
images, so that the ground-truth keypoint correspondences can be identified
similarly to [5]. It was found that both types of features have practically the
same repeatability (actually, repeatability of SIMSERs is slightly higher by a
statistically negligible margin of 2.4%).

Matching (keypoint descriptors). Precision and recall of keypoint matching
was evaluated on the same dataset [12]. First, SIFT descriptors are matched by
the one-to-one (O2O) method (using the mutual nearest neighbor approach)
which is considered a recommended setup returning the most credible matches,
e.g. [14].

As seen in the first row of Table 1, SIMSERs outperform MSERs by a
wide margin (both in recall and precision values). An illustrative example given
in Fig. 5 shows a larger number of true correspondences (and fewer incorrect
matches) for SIMSERs than for MSERs.

Matching (visual words). In actual applications (e.g. CBVIR) keypoints are
represented by visual words so that precision and recall based on matching visual
words are more significant in practice. Various sizes of visual vocabularies can be
used, but large vocabularies (at least a few million words) are recommended in
several important works, e.g. [15, 16], to provide sufficient precision (even though
recall may suffer). Therefore, we performed tests focusing on very large vocabu-
laries (vocabularies of 32 million and 1 billion words are used as examples). To
minimize the computational costs of vocabulary building and word assignment,
such large vocabularies are defined using a technique somehow similar to sim-
plified binary embedding, where the numerical value of the code is considered
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(a) (b)

(c) (d)

Fig. 5. A pair of near-duplicate images (a,c), and their O2O matching results for SIFT
descriptors over MSERs (b) and SIMSERs (d).

the word number. Somehow surprising results (showing huge improvements in
recall values) for those two exemplary vocabulary sizes are given in the lower
part of Table 1. The results of Table 1 can be interpreted in the context of Fig. 4

Table 1. Comparative performances of matching SIMSER and MSER features us-
ing SIFT descriptors/words (the results obtained for MSERs are represented by the
reference value 1.0).

Method precision recall

O2O - SIFT descriptors 2.42 2.34

M2M - 32M SIFT words 0.39 11.22

M2M - 1G SIFT words 0.46 12.78

which shows that SIMSER regions (i.e. their best-fit ellipses) tend to nest more
frequently than MSER ellipses (especially in most contrasted parts of images) .

While nested MSERs are undesirable because they create a number of near-
identical descriptors, nested SIMSERs are more useful since they represent visual
data in diversified scales. Thus, their descriptors are usually sufficiently distinc-
tive to be quantized into different words. As a result, several alternative words
are found to represent what effectively is the same visual content. When near-
duplicate image fragments are matched, chances are much higher that some of
those alternative words are identical. An illustrative example is given in Fig. 6.

Those alternative visual words may, nevertheless, cause a drop of precision,
as seen in Table 1 and Fig. 6. In our opinion, this is acceptable because for
large vocabularies precision is usually so high that even if it drops by half (or
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more) it can still be considered satisfactory (especially if combined with a huge
improvement in recall).

(a) (b)

Fig. 6. In (a), MSER features of two images are matched using a vocabulary of 32M
words. Precision is 100%, but recall is very low. In (b), the same vocabulary is used to
match SIMSERs. Precision is lower, but recall improves dramatically.

3.3 Image Matching

Finally, performances of SIMSERs and MSERs have been compared in a typical
CBVIR task, i.e. retrieval of near-duplicate images. A popular UKB dataset (see
[17, 18]) was selected because of its regularity (classes of similar images do not
intersect, and each class consists of exactly 4 images).

Using the same very large vocabularies of SIFT-based words of 32M and
1G words (mentioned in Section 3.2), bag-of-words (BoW) histograms are built
over MSER and SIMSER features and used for pre-retrieval of images ranked
by the similarity of their BoW’s to the query BoW. Individual images randomly
selected from each class are used as queries.

Because our analysis is not targeting any particular database, BoW normal-
ization requiring database statistics (e.g. td-idf, [19]) cannot be applied, and
we use histograms of absolute word frequencies. We selected a simple histogram
intersection measure of histogram similarities (proposed in [20]), where the dis-
tance between two histograms H1 and H2 over Voc vocabulary is defined by

d(H1, H2) =
∑

w∈V oc

min(H1(w), H2(w)), (9)

which nicely corresponds to the intuitive notion of similarity between images.
The results shown in Table 2 give the relative values mean average precision

(mAP) for SIMSER-based approach (MSER-based results are considered unit-
valued references). Again, two vocabulary sizes (i.e. 32M and 1G words) are used,
and mAP is computed for two different scenarios. First, mAP is evaluated from
all retrieved images, and in the second scenario only 20 top-ranked images are
taken into account. The results indicate significant improvements, in particular
for fixed numbers of pre-retrieved images. This is because for large vocabularies
precision of SIMSERs is much lower than for MSERs (see Table 1) so that the
total number of pre-retrieved false-positive images would be larger for SIMSERs.
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Table 2. Relative mean average precision (mAP) of UKB image retrieval using two
large vocabularies over SIMSER features (the corresponding MSER-based results are
consider references with 1.0 value).

Scenario mAP for 32M vocabulary mAP for 1G vocabulary

All retrieved images 1.57 1.63

Only 20 top-ranked images 2.25 2.36

As an example, 8 top-ranked images retrieved by BoWs built over MSERs
and SIMSERs are shown in Fig. 7 (using the first image of UKB database as a
query).

(a)

(b)

Fig. 7. Top-ranked retrievals for the first UKB image (note that in UKB each query
has only three relevant images). In (a), BoW built over MSERs is applied, while in (b)
BoW is built over SIMSERs. The same vocabulary of 1G words is used in both cases.

4 Conclusions

In the paper, MSER features are redefined to improve their performances, pri-
marily in matching and retrieval tasks. Novel SIMSER features (i.e. scale-insensitive
maximally stable extremal regions) are presented as an alternative to MSERs.
SIMSERs are detected at joint local minima of two growth rate functions (in the
threshold dimension and in the scale dimension), i.e. they are extremal regions
which are maximally stable not only under the threshold changes (like MSERs)
but, additionally, under image rescaling (smoothing). The proposed feature de-
tector has the same complexity as MSER detector (subject to the multiplicative
factor corresponding to the number of employed scales).

It has been verified that other important characteristics, namely the average
numbers of features in images and repeatability of features, are practically the
same for SIMSERs and MSERs.

However, CBVIR-related performances, i.e. recall and precision of keypoint
matching, and mean average precision of image retrieval, are significantly im-
proved for SIMSERs. In particular, results on a benchmark dataset indicate that
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SIMSERs are recommended in conjunction with huge-size visual vocabularies,
for which they achieve a tenfold increase of recall over MSERs. This is an im-
portant property, because dramatically lowering recall has been detrimental to
the usage of huge visual vocabularies (which, otherwise, are recommended for
large-scale CBVIR applications).

Apart from typical CBVIR tasks, SIMSERs can prospectively replace MSERs
in other applications. For example, we envisage that image segmentation could
be one of such areas, because multiple-scale MSERs are explicitly used there
(e.g. [21]) or MSER-like structures are exploited as a supplementary tool (e.g.
[22]).

Pseudo-code for computing q2(tj , sk) growth rate function

Input: Im1(M,N), Im0(M,N)

% two binary images of M*N size (at two neighbouring scales)

Input: Rs1(M,N), Rs0(M,N)

% two labeled images of M*N size

Input: SoR1(K1), SoR0(K0)

% list of region sizes (K1 regions in Im1 and K0 regions in Im0)

Storage: Ints(K1,K0) <- zeros

% size of intersections between regions from Im1 and Im0

Output storage: q2(K1) <- large value

% q2 function for Im1 regions initialized with very large values

Output storage: previous(K1) <- zeros

% the numbers of the corresponding regions from the previous scale

for i = 1:M

for j = 1:N

if Im1(i,j)==Im0(i,j)

Ints(Rs1(i,j),Rs0(i,j))++;

endif

endfor

endfor

for i = 1:M

for j = 1:N

temp = SoR1(Rs1(i,j))+SoR0(Rs0(i,j)) - 2*Ints(Rs1(i,j),Rs0(i,j));

temp = temp/SoR1(Rs1(i,j));

if temp < q2(Rs1(i,j)) && Ints(Rs1(i,j),Rs0(i,j)) > 0

q2(Rs1(i,j)) = temp; previous(Rs1(i,j)) = Rs0(i,j);

endif

endfor

endfor
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