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Abstract. The field of face recognition has seen a large boost in per-
formance by applying Convolutional Neural Networks (CNN) in various
ways. In this paper we want to leverage these advancements for face
recognition with 2D-Warping. The latter has been shown to be effective
especially with respect to pose-invariant face recognition, but usually
relies on hand-crafted dense local feature descriptors. In this work the
hand-crafted descriptors are replaced by descriptors learned with a CNN.
An evaluation on the CMU-MultiPIE database shows that in this way
the classification performance can be increased by a large margin.
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1 Introduction

2D-Warping tries to find a warping mapping between two given images. One of
the images serves as source image and the other as target image. The warping
mapping assigns each pixel in the source image a matching pixel in the target
image. This mapping is optimized according to a given warping criterion (energy
function). A similarity measure can be defined based on the assumption that
images of the same class can be warped easier than images of different classes.
The latter can then be used for e.g. nearest neighbor classification [17]. This
approach has achieved very good accuracies for face recognition, especially with
large pose variances (e.g. [12]).

The warping criterion is usually composed of two parts, local descriptor sim-
ilarity and a smoothness term that incorporates the 2D-dependencies of the
pixels in a local neighborhood. In the past, mostly hand-crafted features such as
SIFT [22] have been used as local descriptors. However, this work aims to learn
the local features using a Convolutional Neural Network (CNN). Lately, a lot of
different methods learning a feature embedding by using a siamese architecture
and a contrastive loss [30, 28, 31, 24]. We use a similar approach to learn a regular
grid of local feature vectors that can then be used as input to the 2D-Warping
based recognition algorithm.
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1.1 Related work

In the past, several methods have been proposed that use 2D-Warping for image
recognition [17, 35] or face-recognition in particular [23, 3, 1, 9, 26, 4, 12]. These
methods mostly differ in how the warping criterion is defined and optimized,
but usually use hand-crafted features such as SIFT [22] to describe the images.
In this paper we use the algorithm proposed in [12]. The related work with
respect to convolutional features for face recognition and 2D-Warping can be
divided into the following parts.

First, there is work related to CNNs and Face Recognition. Similar to many
areas of computer vision CNNs also had a large impact on face recognition [13, 37,
33]. While there are approaches taking pose-invariance into account specifically
(e.g. [38]), most related to our work are the approaches where a face embedding is
learned by optimizing a similarity measure between the face images. This can be
done by training a siamese architecture with a contrastive loss [5]. In [28] this has
been extended to a triplet-loss (this could be considered a siamese architecture
with three streams). The training can be improved by including a classification
loss that is trained jointly with the contrastive loss [30], or successively [24].
In [31] additional supervisory signals are included at lower levels of the CNN.
However, none of these methods evaluate using features extracted from the lower
levels of the CNN in combination with 2D-Warping for face recognition.

Second, there is work related to CNNs and 2D-Warping. The work published
in [21] is very closely related to our work. Here the effectiveness of convolutional
features for 2D-Warping is demonstrated for the task of keypoint matching with
2D-Warping, but the network is trained in a single-stream architecture without
contrastive loss. There has also been research to learn convolutional features for
stereo-vision [40, 39]. The CNN is applied on each location resulting in a feature
vector as output, which can then be used by a 2D-Warping algorithm as local
cost. Usually rectified images are assumed and the warping is done only in the
horizontal dimension and no joint training of classification and contrastive loss
is applied. In [20] a conditional random field is optimized for depth estimation
from a single image. By using a CNN small image patches are mapped to a
single depth value which is then used to construct the energy function and the
parameters are learned jointly.

Finally, there is work related to CNNs for local descriptor learning. These
methods are similar to the methods mentioned in the first part but are not specif-
ically for face recognition and focus on learning patch-similarity. One example
is [29] where a siamese architecture is used to learn discriminative features for
image patches. In [25] the features are learned unsupervised and in [11] a metric
network is included that learns a probability that two input patches are similar.

2 2D-Warping

In this section we briefly review 2D-warping or image matching in compliance
with [26]. The approach aims to find a matching between local feature descriptors
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Fig. 1. 2D-Warping: The red feature descriptor is mapped with respect to the horizon-
tal and vertical neighbor. The blue areas indicate the hard monotonicity and continuity
constraints.

of two images while respecting a local cost function and neighborhood depen-
dencies. To this end a mapping function is searched that receives a set of local
feature vectors of the first image (the source image) as input and maps them
to the corresponding set of feature vectors from the second image (the target
image). The local features are extracted using a regular grid of dimension I × J
for the source and U × V for the target image. As a result, the source image is
defined as X ∈ RI×J×D and the target image is defined as R ∈ RU×V×D where
D is the dimension of the feature descriptor. The warping mapping w then maps
each pixel of X to a pixel of R:

(i, j)→ wi,j = (u, v) ∀(i, j), i ∈ {1, . . . , I}, j ∈ {1, . . . , J} (1)

A local cost function dist(·) returns a score measuring the similarity of two
local descriptors. In this work the l1-norm is used as local cost function. The
neighborhood dependencies are realized using a smoothness term T (·) that pe-
nalizes large disparities in the mapping of pixels within a local neighborhood.
As in [26] we use the l2-norm applied with respect to the vertical and horizontal
predecessor as penalty function in addition to hard monotonicity and continu-
ity constraints that limit the possible displacements of neighboring pixels [35].
These choices have been shown to work well for face recognition [26, 12].

Finally, by combining the local cost and the smoothness term the following
optimization criterion or energy function can be defined:

E(X,R, {wij}) =
∑
i,j

[
dist(xi,j , rwij

) + T (wi−1,j , wij) + T (wi,j−1, wij)
]
. (2)

In the context of classification 2D-Warping can be used in a nearest neighbor
classifier to compensate small intra-class variations [17]. Each training (gallery)
image is warped to the test (probe) image and the resulting energy is used as
a similarity measure. Computing the energy between the probe image and a
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large number of gallery images can be costly, but in face recognition often only
one frontal-view gallery image per subject is used (mugshot-setup). This case is
especially suited for 2D-Warping as a normalized frontal-view image is a very
good source image.

Optimizing the energy function in Formula 2 is an NP-complete problem [16]
and thus computing the optimal solution is intractable. Therefore, several ap-
proximative methods have been proposed (e.g. in the context of face recognition
[26, 2, 12]) and the runtime for 2D-Warping depends on the selected algorithm.
Here we use the algorithm proposed in [12], since this approach leads to good
results for face recognition. The method is called Two-Level Dynamic Program-
ming with lookahead and warprange (2LDP-LA-W). In a local level several can-
didates for the optimization of a column are computed while on a global level the
best sequence of such candidates is found. The procedure is guided by a looka-
head that gives a rough estimate of not yet optimized parts of the image and
the warprange restricts the possible displacements of each pixel (w.r.t. to their
absolute position). The complexity of this algorithm depends on the image and
feature dimensions [12]. The local distances are cached in a pre-processing step
to avoid multiple computations of the same distance [9]. For the final runtime
the choice for the spatial dimensions I,J ,U and V is most important. Ideally,
they should be kept as small as possible while not sacrificing too much spatial
information.

2.1 Features for 2D-Warping

A crucial step in building a nearest neighbor classifier based on 2D-Warping is
the choice of the features. In the past mostly handcrafted features such as SIFT
[22] have been used. E.g. in [12] the authors extract a SIFT descriptor based on
a regular grid. The descriptor is then reduced using PCA [15] and normalized
by the l1-norm. For an input with spatial dimension I × J this results in a 3D
structure of dimension I × J × D with a D-dimensional feature descriptor at
each spatial position (i, j) ∈ I × J (c.f. Figure 1). As demonstrated in [21], the
output of a single convolutional layer of a CNN can be interpreted in the same
way, if the output of a single filter has a dimension of I × J and the layer has
D feature maps. These features can then be used directly to optimize Formula
2. This means the CNN is applied just once on the input image and all local
features are extracted directly from the output of one convolutional layer [21].

For face-recognition with the mug-shot setup and a focus on pose-invariance,
self-occlusions in the probe images caused by rotations can be compensated by
using just the left or the right half of the gallery image [3]. The half-images are
generated after the convolutional features have been extracted by simply cutting
the feature-maps in half.

3 CNN-Model

Our model is based on a simplified version of the well known GoogLeNet [32].
This deep network implements several ’Inception’-modules, which use parallel
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Fig. 2. The siamese CNN model based on GoogLeNet with an early contrastive loss.

convolutional layers with different kernel-sizes, concatenated to generate one
combined output. GoogLeNet uses three classification loss functions at different
depths of the network. We simplify the model by using the layers up to the first
loss function. This includes the first three inception modules. As 2D-warping
needs sufficient spatial dimension to work well, we select the output of one of the
earlier convolutional layers as feature input to the 2D-Warping, specifically we
use first inception module. The corresponding output is composed of 256 feature-
maps with spatial dimension 28 × 28. As in [30] a contrastive loss is added to
the classification loss leading to a siamese architecture [5]. However, we attach
the contrastive loss to the output of the first inception module, since this is the
layer we will be using later for feature extraction. For such a siamese architecture
the training data is composed of positive and negative pairs of images (A,B).
For a positive pair the two images have the same class (Ac = Bc) while for a
negative pair the class differs. We use each image A for the cross-entropy loss
while image B serves as additional supervisory signal to minimize positive and
maximize negative distances. The final layout of the model is shown in Figure 2.

3.1 Contrastive L1-Loss

The input to the contrastive loss is the output of a convolutional layer with
spatial dimension I × J and D feature maps. The first step is to normalize the
features. As described in Section 2, the entries at a specific position in the feature
maps are interpreted as the local feature vectors[21]. For this reason we apply a
position-wise normalization using the l1-norm:

Âi,j,d =
Ai,j,d

‖Ai,j‖1
=

Ai,j,d∑
d′ |Ai,j,d′|

(3)

The actual loss function is based on the contrastive loss proposed in [30], but
as in [5] we use the l1-distance to calculate the distance between two images and
as in [27] a positive margin is included. The local loss for an image pair (A,B)
is given by
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(a) Input (b) Feature maps

Fig. 3. Learned features using the described architecture. Shown are the features-maps
with the highest mean activation (gamma has been increased).

Ln(A,B) =
1

Emax
·
{

1
2 max(0, ‖Â− B̂‖1 −mp)2 if Ac = Bc

1
2 max(0,mn − ‖Â− B̂‖1)2 else

(4)

where mp and mn are margins that regulate the influence of positive and negative
pairs. This helps to avoid that the training focuses too much on optimizing pairs
of the same class that already have a low distance and pairs of different class
that already have a large distance, respectively. This loss function adds two
more hyper-parameters to the training procedure, but both can simply be set
to the mean distance. Additionally, we normalize the loss using the maximal
possible distance Emax, which is known at this point due to the position-wise
l1-normalization. The contribution of the contrastive l1-loss to the overall loss
is weighted by a parameter λ.

Figure 3 shows examples of features learned using the described model. We
show the feature maps with the highest mean activation.

4 Experimental evaluation

We implement the contrastive l1-loss with position-wise l1-normalization using
the open source framework Caffe [14]. To evaluate the 2D-Warping algorithm
2LDP-LA-W (c.f. Section 2) we use the software provided with [12].

The experimental evaluation is done using the CMU-MultiPIE database [10].
The database contains over 700, 000 images recorded in four different sessions
and with variations in pose, illumination and facial expression, the former two are
especially challenging. There are 15 different poses ranging from −90◦ to +90◦

rotation in yaw and 20 different illumination conditions (c.f. Figure 4). There
are two special poses emulating a surveillance camera view by including a small
amount of tilt. To be able to compare with [12] we use the same pre-alignment,
i.e. all images are cropped and normalized based on manual landmarks and pose
information using the method proposed in [8].

We use two different settings. Setting 1 is designed to evaluate the method
with respect to variations in pose [8]. Images from the first recording session
are divided into a training and a test set. The first 100 subjects are used for
training (c.f. Section 4.1), while the remaining 149 subjects are used for testing.
The illumination is kept constant for this setting which leaves 2086 test images.
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(a) (b)

Fig. 4. Example images of the CMU-MultiPIE database. Different poses are shown in
(a) and varying illumination is shown in (b).

In setting 2 the method is evaluated with respect to pose and illumination si-
multaneously. The splitting of train and test subjects is the same as in setting
1, but for setting 2 all illuminations except the front flash (19 in total) are used,
while the poses are reduced to those that range from −45◦ to +45◦ rotation (6
different poses). Overall there are 16, 986 test images in this setting. In both
settings one frontal view image per subject with neutral illumination is used
as gallery which means we only have gallery image for each subject (mug-shot
setup). In both settings, the trained CNN models have not seen the classes to
be recognized before.

4.1 Training

We evaluate several different models, an overview is given in Table 1. The base-
line model (CNN-Base) is trained on ImageNet[6] and provided with Caffe [14].
Initializing with these weights we finetune models using the CASIA WebFace[37]
and the CMU-MultiPIE database (CNN-ft). From the CASIA WebFace we se-
lect the subjects with more than 60 images and create 1000 random pairs (A,B)
for each subject. Half of the 1000 pairs are positive, the other half are negative
pairs. In total there are 4, 874, 000 image pairs for 4874 subjects. Additionally,
we use the 30, 000 images from the training set provided by the two settings for
the CMU-MultiPIE. For each of the 100 subjects we again generate random pairs
and merge this with the training set provided by the CASIA WebFace database.
Since the latter has much more classes we use 10, 000 pairs for each subject
such that the training set is not dominated too much by the CASIA WebFace
database. The model CNN-ft is finetuned using only a cross-entropy loss. This
means the model defined in Section 3 is reduced to the first stream and we only
use the images A of the image pairs. This model is trained for 1, 000, 000 itera-
tions with a batchsize of 32 and a base learning rate of 0.003. The learning rate is
reduced gradually with a step-size of 100, 000 iterations. We evaluate the model
after each 100, 000 iterations using a small holdout-set from the CMU-MultiPIE
images and select the best one for our experiments. Furthermore, a model using
both cross-entropy and contrastive loss (CNN-ft-CL) is trained. For this, we use
the same number of iterations as the best CNN-ft model and the same hyper-
parameters. The additional hyper-parameter λ to weight the contribution of the
contrastive loss is set to 0.1.

We also evaluate training the models from scratch using only data from
CMU-MultiPIE (CNN-M and CNN-M-CL). Since we have less data than in the
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Table 1. Evaluated models.

Name Training database Contrastive loss

CNN-Base Pre-trained on ImageNet[14, 6] no

CNN-ft Finetuned from CNN-Base, WebFace, MultiPIE no
CNN-ft-CL Finetuned from CNN-Base, WebFace, MultiPIE yes

CNN-M MultiPIE no
CNN-M-CL MultiPIE yes

previous case we reduce the number of iterations and the step-size for adjusting
the learning rate and evaluation. To have a better starting point for the distances
in the contrastive loss, CNN-M-CL is finetuned from the best CNN-M model.

Apart from the different models there are also different ways to extract the
features. As mentioned earlier, for 2LDP-LA-W we extract the features after the
first inception layer (Inception 1 in Figure 2). For comparison we also extract
features at the last layer before the cross-entropy loss is applied, which is a fully
connected layer of dimension 1024 (FC 1024 in Figure 2). We use these vectors in
a nearest-neighbor classifier with l1-distance (NN-l1) and without 2D-Warping
(the spatial dimension is 1× 1 at this point). Note that at this point we can not
match left and right halves of the gallery anymore, since no spatial information
is left.

4.2 Results setting 1: Pose

The first evaluation with respect to robustness against pose variation is done
using setting 1. The results are given in Table 2. We specifically compare our
approach to the result reported in [12] using 2LDP-LA-W with SIFT features.
For the latter, the authors use a 68×86 grid to extract feature vectors of dimen-
sion 30 (reduced by PCA). In our case, the feature dimension is with 256 much
larger, but the spatial dimension is only 28× 28.

It is surprising that applying 2LDP-LA-W with the out-of-the-box features
CNN-base already achieves a slightly better result than with the SIFT features,
even though no training with respect to a face recognition task has been per-
formed. However, the models trained on face recognition database yield a sig-
nificant improvement, especially when using the contrastive loss. While training
the model from scratch using only the data from the MultiPIE database already
achieves a large improvement over the previous approaches, the best result is
achieved by finetuning CNN-Base with the WebFace and MultiPIE databases.
Using the features extracted at the last fully connected layer does not work as
well for setting 1, since the variation in pose can not be compensated, which
demonstrates the need for more sophisticated spatial normalization than offered
by the pooling layers included in the CNN.

More detailed results for all 14 test poses in setting 1 are given in Figure
5. While most methods achieve close to 100% accuracy on the images with 60◦
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Table 2. Setting 1: Results reported in accuracy[%].

Method Total without Total
Surveillance

PLS [8]∗∗ 90.5 90.0
MLCE [19]∗ 92.1 -

2LDP-LA-W + SIFT [12] 90.2 91.5

2LDP-LA-W + CNN-Base 91.7 91.7

2LDP-LA-W + CNN-ft 92.7 93.2
2LDP-LA-W + CNN-ft-CL 95.5 96.1

2LDP-LA-W + CNN-M 89.3 88.6
2LDP-LA-W + CNN-M-CL 94.0 94.6

NN-l1 + CNN-ft-FC1024 71.6 70.0
NN-l1 + CNN-ft-CL-FC1024 71.9 71.0

∗ Different pre-alignment.
∗∗ Different illumination.
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Fig. 5. Setting 1: Results for each pose. The poses marked as −45◦
s and 45◦

s are the
special surveillance poses.

or less rotation in yaw, the more challenging poses prove difficult to handle,
especially the poses with 90◦ rotation. On these two poses our approach with
2LDP-LA-W and CNN-ft-CL features achieves the most improvements.

4.3 Results setting 2: Pose and Illumination

We also evaluate robustness with respect to illumination to see how well the large
variations in lighting contained in the CMU-MultiPIE database are learned. The
results are given in Table 3. The evaluation only includes the best performing
model from setting 1 (also on this task, the other models did not achieve compet-
itive performance). Additionally we evaluated the effect of a normalization with
respect to illumination [34], which is also used by the best performing state-of-
the-art method [7]. While the features extracted with CNN-ft-CL lead to good
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Table 3. Setting 2: Results reported in accuracy [%].

Method -60◦ -45◦ -30◦ -15◦ +15◦ +30◦ +45◦ +60◦ Total

Ridge regression [18]∗ - 63.5 69.3 79.7 75.6 71.6 54.6 - -
RL-LDA [41]∗ - 67.1 74.6 86.1 83.3 75.3 61.8 - -
CPF [38]∗ - 73.0 81.7 89.4 89.5 80.4 70.3 - -
AQI-GEM [36]∗,∗∗ - 79.0 90.3 97.0 98.3 94.7 87.4 - -
PBPR [7]∗ 90.9 97.9 99.4 99.0 99.9 99.2 98.2 87.8 96.6

2LDP-LA-W
+ CNN-ft-CL 72.8 79.5 85.8 92.9 95.4 90.1 81.6 71.8 83.7
+ Norm[34] + CNN-M-CL 77.0 91.6 96.1 98.0 99.2 97.6 90.6 79.7 91.2
+ Norm[34] + CNN-ft-CL 85.5 94.7 98.6 99.5 99.8 99.0 92.6 86.5 94.5

∗ Different pre-alignment.
∗∗ Automatically detected landmarks.

results, it is evident that the variation with respect to the difficult lighting con-
ditions was not learned to full extend. Normalizing the gallery and test images
and finetuning the model further on normalized images (MultiPIE only) yields a
significant improvement. Again, training from scratch using only data from the
CMU-MultiPIE database performs slightly worse.

5 Conclusion

Using 2D-Warping (2LDP-LA-W in particular) leads to high accuracies for face
recognition, especially with respect to pose-invariance. We combined this ap-
proach with powerful CNN-models and outperformed 2LDP-LA-W with hand-
crafted SIFT features by a large margin. This is achieved by using a siamese
architecture with a contrastive l1-loss attached to a lower layer of the CNN-
model, whose features are the input to the warping algorithm.

For future work it would be interesting to evaluate, if the distance used in the
contrastive-layer can be replaced by a warping distance directly. This might lead
to problems with the runtime, but a simple warping method such as zero-order
warping [17] would be fast enough. It would also be interesting to evaluate if
advances such as the triplet loss [28] lead to further improvements.
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